If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2=1080
We move all terms to the left:
12x^2-(1080)=0
a = 12; b = 0; c = -1080;
Δ = b2-4ac
Δ = 02-4·12·(-1080)
Δ = 51840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51840}=\sqrt{5184*10}=\sqrt{5184}*\sqrt{10}=72\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{10}}{2*12}=\frac{0-72\sqrt{10}}{24} =-\frac{72\sqrt{10}}{24} =-3\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{10}}{2*12}=\frac{0+72\sqrt{10}}{24} =\frac{72\sqrt{10}}{24} =3\sqrt{10} $
| 2,5(4x+6)=45 | | 3/4x-1/2=-7/12 | | 4x2+12x=0 | | -r/3+7=-2 | | -6p+7=3(3p-3)-4(-10+4p) | | -6p+7=3(2p-3)-4(10+4p)- | | 2(12+3+8)-6=6x(3) | | 4(x-3)5=1 | | x+2,121=14,165 | | 5x-1=4(x-9) | | −4/5(y−4)=−1/6(y+34) | | 1/5(2f-3)+1/6(f-4)+2/15=0 | | −45(y−4)=−16(y+34) | | t÷4-1=12 | | a÷5+8=15 | | 5x-1=(x-9) | | 5+5x=204 | | X^2+x-690=0 | | 18x-51=9(4x+5)-6(3x-10) | | 1/4(2x-1)+3=1/2 | | 5(x+2)−10=15 | | 5(x+2)−10=15. | | -2(x+6)+3=6(x+4)+3 | | −y+11=6y+18 | | 3x-7(9-x=12 | | 175+15b=595 | | 15x-7+x+11=180 | | 8+7+x=16 | | 6y+12=212 | | 2+3/4=1+2/3y+5/6 | | y/4-2=y/5 | | 150/20=3/x |